If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-4096x-16384=0
a = 1; b = -4096; c = -16384;
Δ = b2-4ac
Δ = -40962-4·1·(-16384)
Δ = 16842752
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{16842752}=\sqrt{65536*257}=\sqrt{65536}*\sqrt{257}=256\sqrt{257}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4096)-256\sqrt{257}}{2*1}=\frac{4096-256\sqrt{257}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4096)+256\sqrt{257}}{2*1}=\frac{4096+256\sqrt{257}}{2} $
| -15=7z+48 | | x(x)=7x2−567 | | X*x+x-19=0 | | 3b-5-4=-18 | | x+(1/3x+5)=48 | | 2(x*15)=55 | | 15^(-4r)+1=77 | | t+5.5=15.5 | | 11(2c+8)=-2 | | 10(x-10)=2(x-6) | | m+14=18*m | | 2(4-3(x-2))=2(4x-4) | | 14=11+8w⋅6 | | 14=10x+10 | | 64+p=82 | | 21=-2x+27 | | 15=4.3n-2.1n-8.4 | | 2j-6=22 | | -4z+46=6 | | -42z+46=6 | | 2(6d+3)=18 | | 700-x=x | | w+1/6=-2/5 | | 5(x-5)=-2(20+x) | | (x-4)^5/2=243 | | 3x-8=5(x-8) | | 4c^2+4c+1-15=0 | | 15x2-56=88+6x2 | | 2x+8=6x-12-13/2x | | 12x^2+18x=x+15 | | (3x-9)(3x-9)=(2x+2)(2x+29) | | (x-8)*3=(x+2)*7 |